Jun 112014
 

https://support.avaya.com/downloads/download-details.action?contentId=C20145311538319080_3&productId=P0599&releaseId=UNIStim%205.x

Updated my Google doc table of IP Phone firmware:

Nov 072013
 

Issue

When IP Phones enter a reboot loop, attempt to “upgrade”, fail, then reboot again, or
When IP Phones enter a reboot loop, attempt to “upgrade”, fail with “FW authentication failure”, then reboot again

Environment

Avaya CS1000

UNIStim 5.0 or earlier

Avaya IP Phone 1100, Avaya IP Phone 1200

Cause

UNIStim firmware is digitally signed.

Signature has an expiration date.

UNIStim versions prior to 5.0 had shorter expiration dates.

New IP Phone hardware will not load firmware with expired signatures.

Source: http://downloads.avaya.com/css/P8/documents/100152833

Solution

Use UNIStim 5.1 or later firmware.

Avaya has applied a digital signature with a 10 year expiration date to UNIStim 5.1 and later.

UNIStim 5.5.1 (C8T) released in Aug 2013.

I updated my Google drive table of UNIStim firmware releases.

 

Oct 182013
 

In a previous post, I talked about an experience I had in documenting for co-workers how to set up the CS1000E. The root cause of that documentation was the excessive amount of time I spent cleaning up after a field person who refused to install this properly and the subsequent complaints from customers on why the phone system went down during maintenance windows.

Having the ability to add system redundancy (or resiliency) does not necessarily mean that a customer requires said redundancy, but sometimes the lack of the redundancy is not a factor in the customer’s thinking. Sometimes, knowing you can prevent something (if you pay the associated costs) is not worth the money or time.

This is a different decision from arguing that something doesn’t work a particular way– and today I ran into this problem with a customer who did not have the necessary redundant network connections and experienced an outage as a result.

In this particular case, either the cable and/or data switch port went bad. Had the customer installed the necessary redundancy, the failure of a single port would not have been noticed and the system would have kept on trucking.

As part of the post event discussion, I walked them through how the architecture supported additional redundancy and the extent to which that redundancy can be expanded. I decided to work up a diagram to more fully explain what I was talking about.

This diagram shows a CPPM CS (Call Processor Pentium Mobile – Call Server) connected to the passthrough port on the MGC. The passthrough port permits you to simulate increased CS redundancy to the ELAN network by passing though to either active MGC ELAN interface.

The downside of this connection is that if the MGC undergoes maintenance, or the cable goes bad, you still have a single-point-of-failure.

I would do this primarily only when the environment is also going to deploy redundant TLAN/ELAN data switches for increased network resiliency. Otherwise, connecting the CS directly to the ELAN network makes more architectural sense to me. (That way if you’re installing loadware on the MGC associated with the CS, you don’t cause outages to the entire system when the MGC is rebooted– although there are architectural decisions that can be made to work around some of that as well but we’re not going to cover every possible scenario in this article. Please feel free to comment below to engage in a discussion if you have questions or want to share your observations.)

The diagram also shows the redundant connections from the MGC (faceplate & rear-chassis) connected to a redundant data network. NOTE: I do not show the data switch connectivity with the rest of the network. That’s sort of beyond the scope of the CS1000 resiliency feature. You can, I’m sure, get the gist of it from this article.

Sep 262013
 

A co-worker was recently tasked with providing cross training for a product which I do not have much experience with on the topic of T1 troubleshooting and alarm clearing. After getting this class, I decided it would be fun to put together something similar (in blog format) for CS1000 T1 alarm clearing.

Receiving an alarm

There are a variety of PRI alarms, but we’ll take one of them as an example:

DTA021 [loop]

Interpreting the alarm

Some systems have part of the alarm lookup database on-system which can be accessed via the Overlay Loader (OVL000 and a > prompt) using the ERR command

>ERR DTA021

If the alarm library is loaded with that alarm, then you’ll get the help text. If not, you’ll get an error:

OVL441 Help text not found for error code: [code]

All alarms in the documentation are in 4 digit length after the 3 letter alarm group code. DTA are digital trunking alarm. 021 is the specific alarm. Finding it in the documentation can be done by searching for DTA0021. From the documentation we get the alarm text:

Frame alignment alarm persisted for 3 seconds

Responding to the alarm

Let’s talk briefly about some of the different tools available for troubleshooting:

  • LD 60 / Digital Trunk Interface and Primary Rate Interface Diagnostics
  • LD 96 / D-channel Diagnostics
  • LD 20 / Print Routine 1 – Use to identify a trunk’s association with a Route Datablock (RDB).
  • LD 21 / Print Routine 2 – Used to list trunk members to determine trunk group associations between PRIs/DTIs.
  • LD 22 / Print Routine 3 – Used to print common equipment (CEQU) and D-channel configuration (ADAN DCH)
  • LD 73 / Digital Trunk Interface – Used to check clocking (DDB)

Digital Trunk Interface and Primary Rate Interface Diagnostics

DTI and PRI diagnostics (LD 60) cover a variety of tasks, you can: enable/disable loops, clocking, individual bearer channels (B-channels or BCH) and print/clear counters.  For a full list of commands, see the Software Input/Output Reference – Maintenance (NN43001-711).

Commands:

STAT
STAT [loop]
STAT [loop channel]
Show status of all loops or loop specified. Loop status include loop state and BCH state.
LCNT
LCNT [loop]
List counters
RCNT
RCNT [loop]
Reset counters
SSCK [core]
SSCK [loop shelf]
Show system clock. Includes which circuit is being used for primary clocking and clock state.
SWCK Swap clock from current active to current standby
TRCK [Source] Set clock controller tracking to PCK/Primary Clock, SCK/Secondary Clock, FRUN/Free run-no clock.
ENLL [loop] Enable loop
ENCH [loop channel] Enable B-channel
DISL [loop] Disable loop
DISI [loop] Disable loop when idle. Disables any IDLE channel then waits till other channels are disabled. Loops until all B-channels are disabled then disables loop.
DSCH [loop channel] Disable B-channel

D-channel Diagnostics

DCH Diagnostics covers: enable/disable d-channels, d-channel monitors, and work with MSDL or TMDI cards. On larger legacy 1000M systems, the Multipurpose Serial Data Link (MSDL) card is used to provide D-channel functionality. On smaller 1000M systems and newer 1000E systems, the D-channel functionality is built into the TMDI (T1 Multipurpose Digital Interface) card. In this article, we will not be discussing troubleshooting D-channel diagnostics for MSDL cards on larger 1000M systems.

Commands:

STAT DCH
STAT DCH [dch]
Show status of all/specific DCH.
ENL DCH [dch] Enable DCH
DIS DCH [dch] Disable DCH
STAT TMDI [card] Show status of TMDI. (CS1000M small system)
STAT TMDI [loop shelf card] Show status of TMDI. (CS1000E)
DIS TMDI [card] Disable TMDI. (CS1000M small system)
DIS TMDI [loop shelf card] Disable TMDI. (CS1000E)
SLFT TMDI [card] Selftest TMDI. (CS1000M small system) Performs multiple hardware tests to verify TMDI is functional.
SLFT TMDI [loop shelf card] Selftest TMDI. (CS1000E) Performs multiple hardware tests to verify TMDI is functional.
ENL TMDI [card [fdl]] Enable TMDI. (CS1000M small system) Optional FDL/Full Download of TMDI EPROM.
ENL TMDI [loop shelf card [fdl]] Enable TMDI. (CS1000E) Optional FDL/Full Download of TMDI EPROM.
PLOG DCH [dch]

Print Routine 1

The command architecture for the CS1000 is built on the older Meridian-1 systems, which in turn is built upon the even older SL-1 systems. When the SL-1 hardware architecture was replaced or improved, Nortel introduced new commands or Overlays as needed, all while keeping the essential command structure introduced with the first SL-1 system in the mid-1970s.

Print Routine 1 covers peripheral programming, including the bearer channel (BCH) configuration for a T1. From the Terminal Number configuration of a BCH, it is possible to identify the route membership for a particular channel, and by extension the T1. (While it is technically possible to configure different channels within a T1 to belong to multiple routes, I’ve never seen this and excepting MUXed circuits I am not aware of any reason why it might be done.)

Print Routine 2

Print Routine 2 covers customer datablock configurations, including route datablock (RDB) settings. By using the List Trunk Members command, it is possible to identify all of the BCH (and by extension all the T1s) that belong to a particular route (i.e., trunk group).

Print Routine 3

Print Routine 3 covers hardware and system configuration data, such as the Common Equipment (CEQU) datablock and Action Device and Number (ADAN) datablock, the latter of which is used to store information about D-channel configuration.

Digital Trunk Interface

When building a PRI/DTI in a CS1000 system for the first time, the Clock Controller and Alarm Threshold values must be set. For systems in the USA, the DDB (digital data block) configuration record contains the relevant configuration settings.

Diagnostics vs Print Routines & configuration

LD 60 and 96 are used primarily for diagnostics. Overlays 20-22 and 73 would be used to configuration review to assist with diagnostics. For the purposes of this article, we will assume that a configuration issue is not at fault. Perhaps in some future article I might cover PRI configuration in more detail.

References

NN43001-611 Software Input/Output Reference – Administration

NN43001-711 Software Input/Output Reference – Maintenance

NN43001-712 Software Input/Output Reference – System Messages

NN43001-301 ISDN Primary Rate Interface Installation and Commissioning

Sep 192013
 

LLDP-MED for Avaya CS1000 IP PhonesIncreasing boot efficiency is one of those things I’m working on. My personal or work PC, my IP Phone, systems I manage. The less time I have to spend sitting around waiting for something to boot up is more time doing something productive. On the PC, that involves looking at your startup folder, your registry run folders and removing any unnecessary services from automatic startup.

For Avaya CS1000 IP Phones, that involves looking at the config and determining which features can be added or removed to achieve an optimal boot up sequence.

Although my 4st post is not live yet (when it is, it will be here), in it I cover Link Layer Discovery Protocol (LLDP) and how it applies to Avaya CS1000 IP Phone deployment. On of the biggest inefficiencies I’ve found in CS1000 IP Phone deployments is where customers leave LLDP enabled but don’t use it.

ZzzWaiting for LLDP-MED (Link Layer Discovery Protocol, Media Endpoint Discovery) can add as much as 30 seconds delay to the boot process… So disable it if you’re not using it!

With stickiness, you can configure the Phone to not use LLDP on bootup, or you can disable it manually at each phone by turning it off.

On the other hand, if use LLDP you might increase boot efficiency by distributing the configuration of the IP Phones and reducing dependency upon DHCP. If you want to configure the Voice VLAN but don’t use LLDP, your options are to manually configure each IP Phone or use the VLAN-A option to assign a Voice VLAN ID.

Avaya CS1000 IP Phone, DHCP provisioning behaviorIf you use DHCP though, you’re going to be querying the DHCP server (or multiple servers) multiple times.

It’s certainly faster than waiting for LLDP-MED to time out, but using LLDP-MED is faster than multiple DHCP queries (Although talking a fraction of the delay caused by LLDP-MED being enabled and unused.)

It’s also a good idea to reduce the number of retries to allow the IP Phone to failover to an alternate signaling server (i.e. Connect Server) more quickly.

Take away:

  • If you’re not using a feature, disable it. Your phones will boot faster and you’ll recover more quickly from maintenance windows or disaster.
  • Nortel-i2004-B,s1ip=10.10.10.10;p1=4100;a1=1;r1=3;s2ip=10.10.10.20;p2=4100;a2=1;r2=3;vq=y;st=y;lldp=n;vvsource=a;

Sep 192013
 

Tagged & Unregistered Frame Diagram

Recently found myself troubleshooting Untagged and Unregistered frame filtering on an Avaya Ethernet Routing Switch. This is a quick tutorial for future discussions with other engineers about how filtering works on an Avaya Ethernet Switch.

A quick description of tagged vs registered:

  • A tagged frame is a frame which has an 802.1q VLAN ID tag on the packet.
  • A registered frame is a frame which has an 802.1q VLAN ID tag on the packet that matches the VLAN MEMBERS configuration on the port.

In the above diagram, if the packet egressing from the first data switch is tagged with VLAN 10 (PVID or Primary VLAN ID 10), then the packet is both tagged and registered when it ingresses on the second data switch. However, if the packet is tagged with VLAN 20, the packet is tagged but unregistered when it ingresses on the second data switch.

Use of untagged filtering or unregistered filtering is for environments where the administrator wishes to protect against mistakes in recabling network devices or vlan configuration mistakes. One of the historical issues that has happened in the past with Nortel Ethernet Routing Switches is that if an unregistered frame is received and the receiving data switch does not know what to do with it, it may divert the packet to VLAN 1 (the default VLAN ID on all data switches). This can result in accidental broadcasts of extraneous packets.

A few examples of network changes that might result in problems:

  • Accidentally connecting a server to the second data switch trunk port– the server packets are filtered by filter-untagged-frame enable.
  • Accidentally connecting a different data switch to the second data switch trunk port– if the vlan membership and PVID settings are different, the server packets can be filtered by filter-untagged-frame or filter-unregistered frame.
  • The first data switch is factory reset or the trunk port is configured with VLAN membership that need not be extended to the second data switch– if the 802.1q VLAN ID on the packet is not one of the VLAN member IDs on the ingress port, then the packet will be filtered by filter-unregistered-frame. If the first data switch port is configured as a non-trunk port (any other tagging configuration: tagging untagpvidonly, tagging untagall, tagging tagpvidonly) and the packet is untagged and sent to the second data switch, then the filter-untagged-frame setting may cause the packet to be filtered on ingress.

Michael McNamara posted an article back in 2007 discussing an issue with Avaya IP Phones where filter-unregistered-frame enable caused problems with IP Phone registration. The relevant excerpt is as follows:

The option (vlan ports 1-46 filter-unregistered-frames disable) was added after an issue was discovered when trying to upgrade the firmware on the IP phones. The filter-unregistered-frames is enabled by default and should be disabled to avoid and issues with upgrading the firmware on the IP phones. We are attempting to investigate further with Nortel and our voice vendor…

Take away:

  • The way I read the documentation, and I haven’t had a lot of opportunity to thoroughly test this, filtering is ingress only. This means you’re consuming bandwidth with improper egress port configuration. Depending on your environment, this wasted bandwidth might be minor or major.
  • Use of VLAN ID is strongly frowned upon in a multiple VLAN environment. Don’t assign PVID 1 or VLAN ID to any ports (i.e., remove VLAN 1 from all ports, because VLAN ID 1 is on everything in factory default configurations.) If you’re not doing any VLANing or any Layer 3 routing (i.e., simply Layer 2 switching only), then VLAN ID 1 is fine– but as soon as you start tagging packets on that switch you should stop using VLAN ID 1.
  • Filtering is best used on trunk ports to prevent broadcast storms or extraneous packets from being broadcast into a data switch (and the impact of extraneous packets from diverted unregistered frames is minimized if you do not use VLAN ID 1.)

What to do with this information:

  • Review all ports for VLAN membership or PVID of 1– if found and if you are a multi-VLAN environment, convert VLAN ID 1 to another VLAN ID on all ports then remove VLAN ID 1 from all ports (including PVID 1).
  • Review all ports set with tagging tagAll (including multi-link trunk (MLT) ports)
    • Compare VLAN membership and PVID settings on each side of a trunk connection.
    • Make sure VLAN membership matches on both sides.
    • Make sure the PVID ID on each side is a VLAN member on the opposite side.
    • Make sure the PVIDs match on both sides (I can’t think of any valid design reasons why PVIDs might not match.)
  • Review all trunk ports (tagging tagAll) and set filter-untagged-frame enable
  • Review all trunk ports (tagging tagAll) and set filter-unregistered-frame enable
  • Review all non-trunk ports (access ports) and set filter-untagged-frame and filter-unregistered-frame based on the network design
    • Note: If the port will not be receiving 802.1q tagged packets on ingress, then filter-untagged-frame and filter-unregistered-frame should be disabled.

Sep 172013
 

Avaya CS1000 IP Phone registration process, DHCP (c) 2013 John Williams, DATARAVEIn my 3rd company blog article, I talked about DHCP and auto configuration via DHCP. There are fifteen different feature groups (IP Deskphones Fundamentals, NN43001-368, Appendix B: Provisioning the IP Phones) and 100+ different settings configurable via DHCP (I didn’t count them, I’m estimating). Some of the gotchas I’ve learned over the years are as follows:

  • As noted in the 3rd blog post, Stickiness can cause deployment issues for refurb phones– Always add a factory reset to your troubleshooting efforts (**RENEW[MAC]##), which was introduced in UNIStim 3.0, otherwise your refurb phone may not operate as expected when first deployed.
  • When you have multiple Signaling Servers– Always make sure that both Sig Servers are using the same IP Phone firmware, otherwise your phones may “upgrade” to an earlier firmware release when they failover, resulting on extended and unexpected downtime.
  • Know your current UNIStim firmware. There have been issues in the past where newer IP Phone hardware requires a minimum firmware level, which means that all IP Phones in the environment must be upgraded in order to deploy new phones.
  • Learn how to use PRT TNB commands in LD 20 and STAT IP commands in LD 117 (I’m actually planning on doing a future blog post on this topic, since the LD 117 commands can be used to also inventory your IP phones)–
    • Make sure that the TNB is programmed, otherwise you’ll get SRPT062/SRPT0062 – Request to register TN rejected. Reason = UNEQUIPPED.
    • Make sure the set isn’t deployed elsewhere, otherwise you’ll get SRPT062/SRPT0062 – Request to register TN rejected. Reason = DUPLICATE.
    • Make sure the set is the right TYPE, otherwise you’ll get SRPT062/SRPT0062 – Request to register TN rejected. Reason = WRONGTYPE.
    • Make sure the set is of the right TN_TYPE (covered in part 2 of the company series), otherwise you’ll get SRPT062/SRPT0062 – Request to register TN rejected. Reason = CANNOTCONVERT
      • 2004P1, 2004P2, 2210, 2211, 2007, 1140, 2050PC, 2050MC, 6140
      • 2002P1, 2002P2, 1120, 1220, 6120
      • 2001P2, 2033, 1110, 1210
      • 1230
      • 1150
  • Know how to troubleshoot your data network– Always make sure that your provisioning method is supported in the subnet where the IP phone is being deployed and know how to check the data network configuration, otherwise your phone might get stuck at “Starting DHCP…” or “Connecting to S1…” (or “Connecting to S2…”)
    • I can’t tell you how many times I’ve seen a telecom tech install an IP Phone into a brand new subnet which has no DHCP configuration options, or a new data switch without correct VLAN settings, and then request help– only to be landed with a bill for not setting up the new subnet correctly.

Another thing that I find extremely helpful is learning the provisioning cycle and the status messages which display on the IP Phone during boot up:

Provisioning Step Display message
LLDP Waiting for Cfg Data…
DHCP Starting DHCP…
Manual Provisioning Prov. 192.168.0.254 (or whatever IP you have)
system.prv reading…
(system.prv failed may display)Attempting TFTP…
Registration (pre-connect) Connecting to S1
Connecting to S2
Registration (post-connect) Connect Svc
Node & TN
Connect Svc
Forwarding…

This way, if you get stuck at a particular phase, you know where and can use that to determine your next troubleshooting step. For example;

  • If you get stuck at “Starting DHCP…” then you should check (a) is your DHCP server still running, (b) are you in a subnet that provides the DHCP options you need, (c) can your IP phone reach the DHCP server, (d) does the IP Phone firmware support the features you’re trying to push to it?
  • If you get stuck at “Attempting TFTP…”, (a) is your TFTP server still running, (b) can you IP Phone reach your TFTP server, (c) are your PRV files correctly configured?
  • If you get stuck at “Connecting to S1” (or S2), (a) is your IP Phone in the right VLAN, (b) Can the IP Phone reach the signaling server, (c) is the signaling server still running?
  • If you get stuck at “Connect Svc Forwarding…” then there is something wrong with your signaling server– it’s responded to the initial connect request, and it’s forwarded the request to the signaling server but the signaling server isn’t responding correctly to complete the registration process.

Aug 272013
 

Last week I talked about an overview of  the registration process and the different phases for the Avaya IP Phone registration process. This week my contribution to the company blog covers the essential information needed to deploy any IP phone. Understanding IP Phone deployment, essential information needed for all deployment scenarios. Part two of a six part series.

Getting started

I start with the assumption that you already know a little bit about the CS1000 architecture and programming– I tried to keep this article to 600-800 words, and even discounting some of the captures I put in the article it still came out to almost double the size. To do a really in depth review of this topic you need a lot more than just a six part series. But, I have plenty of other topics that need attention and while IP Phone deployment is an interesting topic (to me, because of the number of features available compared to those that are implemented in most sites) as a topic, it’s just one of many. Writing white papers is best left to people who have that as a job– amiright?

Unlike completely creative writing, the technical writing comes very easily. The problem with creative writing is always figuring out the answers that you don’t even really understand the questions to– if X happens, how does Y feel about it, how do they react, etc. When a writer gets stuck, often the problem is that either they’re not able to answer the question, or they may not even realize what question they need to answer. But, with technical writing, all you have to be is knowledgeable about your topic and have time to flip through the documentation.

Trimming the fat

But, I removed a lot of in depth detail that I started to slide into the original blog article and instead referenced the documentation. I figure I trimmed at least another 800 words from the article that gave a lot more detail on the use of the Nortel-i2004-A string, as well as a few other B-string mnemonic that I really like when I’m in charge of IP Phone deployment (or tasked with consulting with a customer.)

Trimming takes at least two passes.

Fact checking

Speaking of documentation, it was a challenge getting some of this history straight. I was around during the UNIStim 1.x days (we’re at 5.4 now), but the documentation doesn’t really talk about when features were implemented, changed or removed.

For instance, it wasn’t until 2.2-2.3 that the new Nortel-i2004-B string was introduced, but the latest UNIStim 5.4 documentation doesn’t say when it was introduced. This is important because if you’re on firmware prior to 2.3, you might not be able to support the B string format (I know this is unlikely– but I know of customers that are still on Meridian-1 software that was released before I got into Telecom in 1999.)

In addition to filling in the facts that I could validate through documentation, I also had to make sure that I hadn’t introduced any errors through typos or omissions. Being thorough takes a couple of passes.

Formatting

Selecting images to fill out a blog is tough for me– I struggle with the artistic creativity required for selecting images that work with the blog post. And, when I cannot find what I’m looking for (and when a google search fails me), I whip something up in Photoshop. You might think that’s creative, but it doesn’t feel that way.

Then, it’s on to getting the text formatting right. Another couple of passes there. Headers are properly coded with the correct H1,H2,H3 tag, words and phrases get the correct bold/underline/italics emphasis. Colored text, when used, can convey information subtly. (e.g., On my company blog articles, I use a dark green bolded text format to represent terms which are universal and not specific to the subject of my blog.)

Approval

Then I submit the blog post to the company approval process and if it gets approved, we schedule it for posting.

 

And thus, Part 2, IP Phone deployment, essential information goes live.

 

The full series will be:

  • Part 1, IP Phone registration process overviewA review of the basic registration process, the phases, a couple of tips and some hints of topics to come.
  • Part 2, Manual IP deployment, Partial and Full DCHP deployment – the essential information needed for all phone deployment scenarios.
  • Part 3, Full DHCP in more detail – the power of DHCP and auto configuration.
  • Part 4, integrating switch level registration – creating efficiencies in phone registration using LLDP/ADAC.
  • Part 5, Using TFTP provisioning for security and redundancy – advanced IP phone deployment techniques using TFTP provisioning.
  • Part 6, remote worker scenarios, NAT, VPN, Firewalls – advanced networking scenarios.

 

Aug 232013
 

The IP Phone Registration process articles are some of the most visited articles on my personal blog. So when my employer began a new initiative asking employees to contribute content to the business blog, I proposed and was greenlit to rewrite and publish my IP Phone Registration overview as a six part blog series.

There will be some rehash of information previously posted here, but there will also be parts that haven’t yet been covered.

The full series will be:

  • Part 1, IP Phone registration process overviewA review of the basic registration process, the phases, a couple of tips and some hints of topics to come.
  • Part 2, Manual IP deployment, Partial and Full DCHP deployment – the essential information needed for all phone deployment scenarios.
  • Part 3, Full DHCP in more detail – the power of DHCP and auto configuration.
  • Part 4, integrating switch level registration – creating efficiencies in phone registration using LLDP/ADAC.
  • Part 5, Using TFTP provisioning for security and redundancy – advanced IP phone deployment techniques using TFTP provisioning.
  • Part 6, remote worker scenarios, NAT, VPN, Firewalls – advanced networking scenarios.

Next week, I anticipate getting part 2 approved and published.

Now, for the “Call to Action”– I get special recognition at my job if my articles happen to be the most viewed articles over the next 6 months (compared to any of my co-worker’s articles.) So, I know this topic is popular and I’m hoping you’ll be tempted by more information on this topic.

Go ahead– do us both a favor and click through to the first article Understanding IP Phone deployment, registration process overview.

If you’d like to influence future articles, register to stay informed and ask your questions either via the registration process or the comments section via the Comments section.

May 062013
 

Ever have a massive block of D-Channel (DCH) traces that you need to parse into something meaningful? I do. In fact, for a couple of customers it’s become a regular occurrence the last few months. So, in an effort to make life easier for myself I wrote a nifty little parse utility then converted it to a PHP/HTML page.

My web hosting company has some hard limits– like you can’t use more than 30 seconds of CPU time without a script being killed… so super-long parse logs is out of the question. (They’ll simply get killed by the web host.)

Also, to ensure that it doesn’t get hammered, I wrote into the code a lock so that only one-person can access it at the same time. There isn’t yet an ability to IP Ban, but that will get added– so that if anyone hammers this I can block them from being able to use it.

So, a few etiquette requests:

  • be gentle– keep log sizes under 10k lines and don’t hammer it over and over.
  • If you see a warning that someone else is using it, come back in 30-seconds to 5-minutes.
  • If you’d like something like this, but don’t want to be limited by the freeware constraints, contact me and we can negotiate something.